Tam sayılar ile ilgili problemler ve cevapları

Konusu 'GENEL KÜLTÜR' forumundadır ve sultan_mehmet tarafından 8 Aralık 2012 başlatılmıştır.

  1. sultan_mehmet

    sultan_mehmet © ◄ كُن فَيَكُونُ ► Yönetici Forum Administrator

    Sponsorlu Bağlantılar

    Tam sayılar ile ilgili problemler ve cevapları



    1.soru: 8 tane sayının aritmetik ortalaması 15’tir. Bu sayılara 21 ve 29 katılsaydı, aritmetik ortalama kaç olurdu?
    Çözüm:
    Bu sekiz sayının toplamı,
    8 . 15 = 120’dir


    2.soru: Ardışık 6 tane doğal sayının toplamı, bu sayıların en küçüğünün 7 katına eşittir. Bu sayıların en büyüğü kaçtır?
    Çözüm:
    Ardışık 6 doğal sayı; x, x + 1, x + 2, x + 3, x + 4, x + 5 olsun.
    x + (x + 1) + … + (x + 5) = 7x
    6x + 15 = 7x Þ x = 15 olur.
    Bu sayıların en büyüğü
    x + 5 = 15 + 5 = 20’dir.


    3.soru: Rakamları 0 ve 1’den farklı olan dört basamaklı abcd sayısının rakamlarının sayı değerleri birer azaltılırsa sayı kaç azalır?
    Çözüm:
    (abcd) = 2376 olsun.
    Bu sayının rakamlarının sayı değerleri birer azaltılırsa sayı 1265 olur.
    Fark 2376 – 1265 = 1111’dir.


    4.soru: İki basamaklı (ab) sayısının dört katından, (ba) sayısının 3 katı çıkarıldığında fark 218 oluyor. b = 3 ise a kaçtır?
    Çözüm:
    (ab) = 10a + b ve (ba) = 10b + a’dır. b = 3 ise,
    4 . (10a + 3) – 3(10 . 3 + a) = 218
    40 . a + 12 – 90 – 3a = 218
    37 . a = 296
    a = 8 olur.


    5.soru: a, b, c ardışık tek sayma sayılarıdır. a . c = 357 ise b + c kaçtır?
    Çözüm:
    Ardışık üç tek sayı; a = x – 2, b = x, c = x + 2 olsun.
    a . c = 357 Þ (x – 2) . (x + 2) = 357
    x2 – 4 = 357
    x2 = 361 = 192
    Buradan x = 19 bulunur.
    Buna göre; b = 19, c = 21 ve b + c = 40 olur.


    6.soru: Toplamları 57 olan iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 5, klan 3 oluyor. bu iki sayının çarpımı kaçtır?
    Çözüm:
    Büyük sayı x ise, küçük sayı (57 – x) olur.
    x = (57 – x) . 5 + 3 bölme eşitliğinden,
    x = 48 bulunur.
    57 – x = 57 – 48 = 9 dur.
    Bu iki sayının çarpımı, 48 . 9 = 432 olur.


    7.soru: Ardışık üç sayma sayısının karelerinin toplamı 149 olduğuna göre, bu üç sayının toplamı kaçtır?
    Çözüm:
    Bu sayılar; x – 1, x ve x + 1 olsun.
    (x – 1)2 + x2 + (x + 1)2 = 149
    3×2 = 147
    x2 = 49
    x = 7
    Bu üç sayı; 6, 7 ve 8’dir.
    6 + 7 + 8 = 21’dir.


    8.soru: 6 ve 7 sayılarına bölündüğünde 5 kalanını veren üç basamaklı en küçük sayma sayısının en az kaç fazlası 9 ile tam bölünür?
    Çözüm:
    A = 6x + 5 = 7y + 5 ise, 6 ile 7’nin ekok’u 42 olduğundan;
    A = 42 . t + 5’tir. A’nın en küçük üç basamaklı değeri, t = 3 için 131’dir.
    131 sayısının rakamlarının toplamı 1 + 3 + 1 = 5 ve 9 – 5 = 4 olduğundan, 131’in 4 fazlası 9 ile tam bölünür.


    9.soru: 3 basamaklı abc doğal sayısı 6 ile bölünüyor. ise bac sayısı, aşağıdakilerden hangisine tam bölünmez?
    Çözüm:
    (abc) sayısı 6 ile tam bölündüğünde c çifttir. ve c çift koşulunun sağlanması için c = 2 olmalıdır. Bu durumda,
    (abc) = 642 ve (bac) = 462 olur.
    462 = 2 . 3 . 7 . 11 sayısının asal çarpanları arasında 22 . 3 bulunmadığından, 462 sayısı 12 ile tam bölünmez[Üye Olmadan Linkleri Göremezsiniz. Üye Olmak için TIKLAYIN...]


    10.soru: 540 . x = b2 eşitliğinde x ve b sayma sayılarıdır. bu koşula uyan b sayılarının en küçüğü kaçtır?
    Çözüm:
    540 = 22 . 33 . 5 tir.
    22 . 33 . 5 . x = b2 eşitliğinde, x en az 3 . 5 olmalıdır. Buna göre,
    22 . 33 . 5. 3 . 5 = b2
    22 . 34 . 52 = b2 Þ (2 . 32 .5)2 = b2
    b = 2 . 32 . 5 = 90 olur.

Sayfayı Paylaş